Новое исследование миссии Juno раскрыло динамику электронов вблизи вулканической Ио
Автоматически добавлена на сайт: 12 мар 2025, 22:09
Данные, собранные космическим аппаратом NASA Juno во время сближений с Ио — самым вулканически активным спутником Юпитера — в конце 2023 и начале 2024 года, позволили международной команде учёных под руководством Юго-Западного исследовательского института (SwRI) обнаружить неоднородное распределение высокоэнергетических электронов в так называемом Альфвеновском крыле. Эта структура, связывающая Ио с ионосферой Юпитера, играет ключевую роль в формировании плазменной среды вокруг спутника. Результаты исследования впервые подробно описывают, как энергетические электроны влияют на атмосферу Ио и её окружение. «Эти электроны получают энергию за счёт взаимодействия Ио с магнитным полем Юпитера, — объяснил доктор Роберт Эберт, ведущий автор работы. — Затем они сталкиваются с атмосферой и поверхностью спутника, ионизируя атомы и молекулы, возбуждая их и даже создавая полярные сияния». Спутник Юпитера Ио (левая часть изображения) связан с Юпитером (правая часть изображения) через магнитное поле планеты. Близкий пролет «Юноны» мимо Ио выявил электроны с различными свойствами в области, соединяющей эти два тела Солнечной системы. Иллюстрация: John Spencer, Southwest Reasearch Institute, and John Clarke, Boston University Ещё в 1990-х годах миссия NASA Galileo зафиксировала интенсивные электронные пучки в Альфвеновском крыле и других областях вблизи Ио. Эти электроны движутся вдоль локальных магнитных линий, взаимодействуя с разрежённой атмосферой спутника. Однако новые данные Juno показали, что распределение электронов в Альфвеновском крыле неоднородно: их концентрация максимальна на границах структуры и снижается в её центре. Это указывает на вариативность воздействия электронных потоков на разные участки Ио. В рамках расширенной миссии Juno аппарат совершил два близких пролёта над Ио — 30 декабря 2023 года и 3 февраля 2024 года. Инструмент JADE (Jovian Auroral Distributions Experiment) впервые провёл высокодетальные измерения плазмы в экстремальных радиационных условиях региона. «Удивительно, но JADE смог собрать данные с беспрецедентным разрешением, несмотря на угрозу быстрого выхода из строя любой аппаратуры в такой среде», — отметил доктор Фредерик Аллегрини, руководитель JADE и соавтор исследования. Наблюдения подтвердили, что электронные пучки в Альфвеновском крыле сохраняются над полюсом Ио и распространяются на бо?льшие расстояния, чем фиксировал Galileo. Эти пу